Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Virol Plus ; 1(3): 100038, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-2297483

ABSTRACT

SARS-CoV-2-specific IgM antibodies wane during the first three months after infection and IgG antibody levels decline. This may limit the ability of antibody tests to identify previous SARS-CoV-2 infection at later time points. To examine if the diagnostic sensitivity of antibody tests falls off, we compared the sensitivity of two nucleoprotein-based antibody tests, the Roche Elecsis II Anti-SARS-CoV-2 and the Abbott SARS-CoV-2 IgG assay and three glycoprotein-based tests, the Abbott SARS-CoV-2 IgG II Quant, Siemens Atellica IM COV2T and Euroimmun SARS-CoV-2 assay with 53 sera obtained 6 months after SARS-CoV-2 infection. The sensitivity of the Roche, Abbott SARS-CoV-2 IgG II Quant and Siemens antibody assays was 94.3% (95% confidence interval (CI) 84.3-98.8%), 98.1 % (95% CI: 89.9-100%) and 100 % (95% CI: 93.3-100%). The sensitivity of the N-based Abbott SARS-CoV-2 IgG and the glycoprotein-based Euroimmun ELISA was 45.3 % (95% CI: 31.6-59.6%) and 83.3% (95% CI: 70.2-91.9%). The nucleoprotein-based Roche and the glycoprotein-based Abbott receptor binding domain (RBD) and Siemens tests were more sensitive than the N-based Abbott and the Euroimmun antibody tests (p = 0.0001 to p = 0.039). The N-based Abbott antibody test was less sensitive 6 months than 4-10 weeks after SARS-CoV-2 infection (p = 0.0001). The findings show that most SARS-CoV-2 antibody assays correctly identified previous infection 6 months after infection. The sensitivity of pan-Ig antibody tests was not reduced at 6 months when IgM antibodies have usually disappeared. However, one of the nucleoprotein-based antibody tests significantly lost diagnostic sensitivity over time.

2.
Infect Control Hosp Epidemiol ; 41(10): 1209-1211, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1387076

ABSTRACT

We investigated potential transmissions of a symptomatic SARS-CoV-2-positive physician in a tertiary-care hospital who worked for 15 cumulative hours without wearing a face mask. No in-hospital transmissions occurred, despite 254 contacts among patients and healthcare workers. In conclusion, exposed hospital staff continued work, accompanied by close clinical and virologic monitoring.


Subject(s)
Coronavirus Infections/diagnosis , Infectious Disease Transmission, Professional-to-Patient , Physicians , Pneumonia, Viral/diagnosis , Betacoronavirus/isolation & purification , COVID-19 , Contact Tracing , Coronavirus Infections/transmission , Cross Infection/transmission , Cross Infection/virology , Female , Germany , Hospitals , Humans , Masks , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2
3.
PLoS One ; 16(7): e0254608, 2021.
Article in English | MEDLINE | ID: covidwho-1311288

ABSTRACT

In this retrospective multicentric cohort study, we evaluate the potential benefits of a clinical decision support system (CDSS) for the automated detection of Acute kidney injury (AKI). A total of 80,389 cases, hospitalized from 2017 to 2019 at a tertiary care hospital (University of Leipzig Medical Center (ULMC)) and two primary care hospitals (Muldentalkliniken (MTL)) in Germany, were enrolled. AKI was defined and staged according to the Kidney disease: improving global outcomes (KDIGO) guidelines. Clinical and laboratory data was automatically collected from electronic patient records using the frameworks of the CDSS. In our cohort, we found an overall AKI incidence proportion of 12.1%. We identified 6,393/1,703/1,604 cases as AKI stage 1/2/3 (8.0%/2.1%/2.0%, respectively). Administrative coding with N17 (ICD-10-GM) was missing in 55.8% of all AKI cases with the potential for additional diagnosis related groups (DRG) reimbursement of 1,204,200 € in our study. AKI was associated with higher hospital mortality, increased length of hospitalisation and more frequent need of renal replacement therapy. A total of 19.1% of AKI cases (n = 1,848) showed progression to higher AKI stages (progressive AKI) during hospitalization. These cases presented with considerably longer hospitalization, higher rates of renal replacement therapy and increased mortality (p<0.001, respectively). Furthermore, progressive AKI was significantly associated with sepsis, shock, liver cirrhosis, myocardial infarction, and cardiac insufficiency. AKI, and especially its progression during hospitalization, is strongly associated with adverse outcomes. Our automated CDSS enables timely detection and bears potential to improve AKI outcomes, notably in cases of progressive AKI.


Subject(s)
Acute Kidney Injury/epidemiology , Acute Kidney Injury/pathology , Aged , Disease Progression , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Kaplan-Meier Estimate , Male , Middle Aged , Retrospective Studies
4.
Clin Chim Acta ; 511: 352-359, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-909320

ABSTRACT

BACKGROUND: Serological severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays differ in the target antigen specificity, e.g. of antibodies directed against the viral spike or the nucleocapsid protein, and in the spectrum of detected immunoglobulins. The aim of the study was to evaluate the performance of two different routinely used immunoassays in hospitalized and outpatient COVID-19 cases. METHODS: The test characteristics of commercially available spike1 protein-based serological assays (Euroimmun, EI-assays), determining IgA or IgG and nucleocapsid-based assays (Virotech, VT-assays) determining IgA, IgM or IgG were compared in 139 controls and 116 hospitalized and outpatient COVID-19 cases. RESULTS: Hospitalized COVID-19 patients (n = 51; 115 samples) showed significantly higher concentrations of antibodies against SARS-CoV-2 and differed from outpatient cases (n = 65) by higher age, higher disease severity scores and earlier follow up blood sampling. Sensitivity of the two IgG assays was comparable in hospitalized patients tested ≥ 14 days (EI-assay: 88%, CI95% 67.6-99.9; VT-assay: 96%, CI95% 77.7-99.8). In outpatient COVID-19 cases sensitivity was significantly lower in the VT-assay (86.2%, CI95% 74.8-93.1) compared with the EI-assay (98.5%, CI95% 90.6-99.9). Assays for IgA and IgM demonstrated a lack of specificity or sensitivity. CONCLUSIONS: Our results indicate that SARS-CoV-2 serological assays may need to be optimized to produce reliable results in outpatient COVID-19 cases who are low or even asymptomatic. Assays for IgA and IgM have limited diagnostic performance and do not prove an additional value for population-based screening approaches.


Subject(s)
Ambulatory Care/standards , COVID-19 Serological Testing/standards , COVID-19/blood , COVID-19/diagnosis , Hospitalization , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Ambulatory Care/methods , COVID-19 Serological Testing/methods , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Young Adult
5.
J Clin Virol ; 129: 104544, 2020 08.
Article in English | MEDLINE | ID: covidwho-634673

ABSTRACT

The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) has been followed by the rapid development of antibody tests. To assess the utility of the tests for clinical use and seroepidemiologic studies, we examined the sensitivity of commercial antibody tests from Roche, Abbott, Novatec, Virotech Siemens, Euroimmun, and Mediagnost in a prospective diagnostic study. The tests were evaluated with 73 sera from SARS CoV-2 RNA positive individuals with mild to moderate disease or asymptomatic infection. Sera were obtained at 2-3 weeks (N = 25) or > 4 weeks (N = 48) after symptom onset and viral RNA test. The overall sensitivity of the tests ranged from 64.4-93.2%. The most sensitive assays recognized 95.8-100 % of the sera obtained after 4 weeks or later. Sera drawn at 2-3 weeks were recognized with lower sensitivity indicating that the optimal time point for serologic testing is later than 3 weeks after onset of the disease. Nucleoprotein- and glycoproteinbased assays had similar sensitivity indicating that tests with both antigens are suitable for serological diagnostics. Breakdown of the test results showed that nucleoprotein- and glycoprotein-based tests of comparable sensitivity reacted with different sets of sera. The observation indicates that a combination of nucleoprotein- and glycoprotein-based tests would increase the percentage of positive results.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Viral Structural Proteins/immunology , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Glycoproteins/immunology , Humans , Nucleoproteins/immunology , Pandemics , Prospective Studies , SARS-CoV-2 , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL